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1 Euclidean Domains, Principal Ideal Domains, and Unique
Factorization Domains

1.1 Euclidean Domains and Principal Ideal Domains

1.1.1 Euclidean Domains

Recall that every integer 6= 0 is a product of primes in an essentially unique way. 12 =
2 × 2 × 3 = 2 × 3 × 2 = (−2) × (−3) × 2. So the product is unique up to order and
multiplication by units.

This was essentially proved by Euclid. The key point he used was division with a
remainder. That is, given a, b with a 6= 0, we can write a = bq + r, where r is smaller than
b. Here, q is called the quotient, and r is the remainder.

What does smaller mean in this context? For integers, this means |r| < |b|. We can do
the same thing for polynomials a, b ∈ R[x]; a smaller than b means that deg(a) < deg(b)
(or a = 0).

Definition 1.1. A commutative ring R is a Euclidean domain if it has a function |·| : R→
N such that given a, b with b 6= 0, we can find r, q such that a = bq + r and |r| < |b|.1

Example 1.1. Let Z[i] =
{
a + bi : a, b ∈ Z, i2 = −1

}
be the Gaussian integers. Z[i] is a

Euclidean domain. Define |a + bi| = a2 +b2. This is the usual Euclidean norm but squared
to make sure we get an integer. Given a, b, we need to find r, q such that a = bq + r, which
means a/b = q + r/b, where |r/b| < 1. Given any a/b, we can find q ∈ Z[i] of distance < 1
from a/b. Draw an open disk of radius 1 around each elements of Z[i]. These cover C, so
we can find r, q.

1.1.2 Principal Ideal Domains

Definition 1.2. The ideal generated by elements g1, g2, . . . is the smallest ideal containing
these elements.

1We don’t actually need the codomain of the norm function to be N; we just need it to be a well-ordered
set. In practice, however, the useful examples are all with sets that are basically N.
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We denote (a, b, c, . . . ) as the ideal generated by a, b, c . . . .

Definition 1.3. A principal ideal domain is a commutative ring where all ideals are gen-
erated by one element.

Example 1.2. Z is a principal ideal domain. In Z, we only have ideals of the form nZ.

Example 1.3. Here is an example of a commutative ring that is not a PID. Let R = C[x, y],
and let I = (x, y) be the set of all polynomials with constant term 0. If I = (f), then f
divides x and f divides y. This means f = 1, but 1 /∈ (x, y).

Theorem 1.1. Euclidean domains are principal ideal domains.

Proof. Let I be any ideal. Choose a ∈ I with a 6= 0 and |a| minimal. Then we claim that
I = (a). Suppose b ∈ I. Then b = aq + r with |r| < |a|. So r = b − aq means that r ∈ I,
and the minimality of |a| forces r = 0. So b = aq for some q, and this holds for any b ∈ I,
so I = (a).

Example 1.4. R = Z[(1+
√
−19)/2] is a PID that is not Euclidean. R is a PID; for proof,

see an algebraic number theory course. Here is a sketch that R is not Euclidean. Let a ∈ R
be nonzero and not a unit, with |a| minimal. Then look at R/(a). If b ∈ R, b = aq + r
with |r| < |a|. Then r is 0 or a unit. So every element of R/(a) is represented by 0 or a
unit. The only units of R are ±1, so R/(a) has ≤ 3 elements. If a 6= ±1, 0, then R/(a) has
≥ 4 elements (actually |a|2).

1.2 Unique factorization domains

1.2.1 Definitions and relationship to principal ideal domains

Definition 1.4. Let a, b ∈ R. We say a divides b (denoted a|b) if there exists some c ∈ R
such that ac = b.

Definition 1.5. An element a is called irreducible if a 6= 0, a is not a unit, and a = bc
implies that either b or c is a unit.

Definition 1.6. An element a is called prime if a|bc implies that a|b or a|c.

For Z, these two definitions are equivalent, but this is not the case in all rings.

Lemma 1.1. In a principal ideal domain, irreducible elements are prime.

Proof. Suppose p is irreducible and p|ab. We want to show that p|a or p|b. Suppose that
p 6 |a. Then (p, a) = (c) since R is a principal ideal domain. Then c|p, so c is a unit or
is a unit times p. The second case is not possible because pu = c divides a, but a is not
divisible by p. So (c) contains 1 (by multiplying c by c−1) and is then equal to R. So
(p, a) = (1) = R.

We now have px + ay = 1 for some x, y ∈ R, which makes pbx + aby = b. Both terms
are divisible by p, so p|b. Hence, p is prime.
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Definition 1.7. A unique factorization domain is a commutative ring in which every
element can be uniquely expressed as a product of irreducible elements, up to order and
multiplication by units.

Theorem 1.2. Every principal ideal domain is a unique factorization domain.

Proof. We first show existence of factorization into irreducibles. Given a ∈ R, first find
irreducible p dividing a if a is not a unit. Let a = bc; if b is irreducible, stop. Otherwise, let
b = de, and repeat the process until we get an irreducible element. Can this go on forever?
No. Suppose we have a, b, c, d, e, . . . with a = b′b, b = c′c, etc., where b′, c′, . . . are not
units. Then the ideal (a, b, c, d, . . . ) = (x), since we are in a PID. But then x ∈ (a, b, c, d, e)
(some finite sequence of the variables), so the sequence must stop after finitely many steps.

Now put a = bc with b irreducible, c = de where d is irreducible, e = fg, where f is
irreducible and so on. This stops after a finite number of steps by a similar argument. So
every nonzero element is a product of irreducibles.2

To prove uniqueness, suppose a = p1 · · · pm = q1 · · · qn with pi, qj irreducible. We want
to show that these factorizations are unique up to order and units. p1 is irreducible, so p1
divides some qi as p1 is prime. The qi are irreducible, so qi = p1u for some unit u ∈ R. By
removing p1 and this qi from their respective sides (really we are bringing the two products
to the same side, factoring out the p1, and asserting that the rest equals 0), we can repeat
this to eventually get our result.

Example 1.5. R be the set of polynomials in xq for rational q > 0; this is a set of terms
of elements like 3+3x5/7 +2x17/3. This argument goes wrong here because x = x1/2x1/2 =
x1/4x1/4x1/4x1/4 = · · · . The ideal (x1/2, x1/4, x1/8, . . . ) is not principal.

1.2.2 Examples and Applications

Example 1.6. Suppose a+bi ∈ Z[i] is prime. Then (a+bi)(a−bi) = a2+b2 ∈ Z. So we can
use this to factor elements in Z into elements in Z[i]. For example, 5 = 22+1 = (2+i)(2−i).

65 = 5× 13 = (2 + i)(2− i)(3 + 2i)(3− 2i) = (4 + 7i)(4− 7i) = (8− i)(8 + i)

This gives us 65 = 42+72 = 82+12. So the different factorizations of x ∈ Z in the Gaussian
integers give us the ways to write x as a sum of two squares.

Example 1.7. Let R = Z[
√
−2]. Imagine this as a rectangular lattice in C. The circles

of radius 1 around these points cover C, so as we argued before with Z[i], Z[
√
−2] is a

euclidean domain and hence is a unique factorization domain.
Now let R = Z[

√
−3]. The circles of radius 1 do not cover the point 1/2 +

√
−3/2. In

fact, R is not a unique factorization domain. We have 2 × 2 = (1 +
√

3i)(1 −
√

3i), and

2This is still true if R has the following property: there is no strictly increasing sequence of ideals
I1 ( I2 ( I3 ( · · · . These are called Noetherian rings.
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the only units are ±1. These are all irreducible elements. If 2 = ab, then |a| |b| = |2| = 2,
which means |a| = ±1 or |b| = ±1.

Multiplying z ∈ R by a multiplies |z| by |a| and rotates z by arg(a). So a principal ideal
in Z[

√
−3] looks like a rotated and rescaled rectangular lattice. What does a non-principal

ideal look like? Look at (2, 1 +
√
−3); we get a “diamond” lattice instead of a rectangular

one.

Unique factorization domains need not be principal ideal domains.

Example 1.8. Z[x] is a UFD and has the non-principal ideal (2, x).

Example 1.9. Let K be a field. K[x, y] is a UFD and has the non-principal ideal (x, y).

We will see later that if R is a UFD, then so is R[x], the ring of polynomials over R.

Theorem 1.3 (Fermat). Any prime p ∈ Z with p > 0 and p ≡ 1 (mod 4) can be uniquely
expressed as a2 + b2 (up to sign differences in a, b).

Proof. (Z/pZ)∗ is cyclic of order p − 1 = 4n. It has an element −1 of order 2. Let g be
a generator, so g4n = 1. So −1 ≡ g2n (mod p), which means that −1 is a square mod
p. This gives us that −1 = a2 − np for some n, a. So np = a2 + 1 = (a + i)(a − i) in
Z[i]. p|(a + i)(a− i), but does not divide either of these two factors, so p is not prime and
hence is not irreducible in Z[i]. So p = (a + bi)(a − bi) for some a, b ∈ Z (we must have
this decomposition because a+ bi times any other number would not be purely real). This
makes p = a2 + b2.

For uniqueness, suppose that p = x2 + y2. Then p = (x + iy)(x − iy), which means
x + iy = u(a + bi) for some unit u because Z[i] is a unique factorization domain. Then
x = ±1 and b = ±b.
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