Math 250A Lecture 9 Notes

Daniel Raban

September 26, 2017

1 Euclidean Domains, Principal Ideal Domains, and Unique Factorization Domains

1.1 Euclidean Domains and Principal Ideal Domains

1.1.1 Euclidean Domains

Recall that every integer $\neq 0$ is a product of primes in an essentially unique way. $12 = 2 \times 2 \times 3 = 2 \times 3 \times 2 = (-2) \times (-3) \times 2$. So the product is unique up to order and multiplication by *units*.

This was essentially proved by Euclid. The key point he used was division with a remainder. That is, given a, b with $a \neq 0$, we can write a = bq + r, where r is smaller than b. Here, q is called the quotient, and r is the remainder.

What does smaller mean in this context? For integers, this means |r| < |b|. We can do the same thing for polynomials $a, b \in \mathbb{R}[x]$; a smaller than b means that $\deg(a) < \deg(b)$ (or a = 0).

Definition 1.1. A commutative ring R is a Euclidean domain if it has a function $|\cdot| : R \to \mathbb{N}$ such that given a, b with $b \neq 0$, we can find r, q such that a = bq + r and |r| < |b|.¹

Example 1.1. Let $Z[i] = \{a + bi : a, b \in \mathbb{Z}, i^2 = -1\}$ be the Gaussian integers. Z[i] is a Euclidean domain. Define $|a + bi| = a^2 + b^2$. This is the usual Euclidean norm but squared to make sure we get an integer. Given a, b, we need to find r, q such that a = bq + r, which means a/b = q + r/b, where |r/b| < 1. Given any a/b, we can find $q \in Z[i]$ of distance < 1 from a/b. Draw an open disk of radius 1 around each elements of Z[i]. These cover \mathbb{C} , so we can find r, q.

1.1.2 Principal Ideal Domains

Definition 1.2. The *ideal generated by elements* g_1, g_2, \ldots is the smallest ideal containing these elements.

¹We don't actually need the codomain of the norm function to be \mathbb{N} ; we just need it to be a well-ordered set. In practice, however, the useful examples are all with sets that are basically \mathbb{N} .

We denote (a, b, c, ...) as the ideal generated by a, b, c, ...

Definition 1.3. A *principal ideal domain* is a commutative ring where all ideals are generated by one element.

Example 1.2. \mathbb{Z} is a principal ideal domain. In \mathbb{Z} , we only have ideals of the form $n\mathbb{Z}$.

Example 1.3. Here is an example of a commutative ring that is not a PID. Let $R = \mathbb{C}[x, y]$, and let I = (x, y) be the set of all polynomials with constant term 0. If I = (f), then f divides x and f divides y. This means f = 1, but $1 \notin (x, y)$.

Theorem 1.1. Euclidean domains are principal ideal domains.

Proof. Let I be any ideal. Choose $a \in I$ with $a \neq 0$ and |a| minimal. Then we claim that I = (a). Suppose $b \in I$. Then b = aq + r with |r| < |a|. So r = b - aq means that $r \in I$, and the minimality of |a| forces r = 0. So b = aq for some q, and this holds for any $b \in I$, so I = (a).

Example 1.4. $R = \mathbb{Z}[(1 + \sqrt{-19})/2]$ is a PID that is not Euclidean. R is a PID; for proof, see an algebraic number theory course. Here is a sketch that R is not Euclidean. Let $a \in R$ be nonzero and not a unit, with |a| minimal. Then look at R/(a). If $b \in R$, b = aq + r with |r| < |a|. Then r is 0 or a unit. So every element of R/(a) is represented by 0 or a unit. The only units of R are ± 1 , so R/(a) has ≤ 3 elements. If $a \neq \pm 1, 0$, then R/(a) has ≥ 4 elements (actually $|a|^2$).

1.2 Unique factorization domains

1.2.1 Definitions and relationship to principal ideal domains

Definition 1.4. Let $a, b \in R$. We say a divides b (denoted a|b) if there exists some $c \in R$ such that ac = b.

Definition 1.5. An element a is called *irreducible* if $a \neq 0$, a is not a unit, and a = bc implies that either b or c is a unit.

Definition 1.6. An element a is called *prime* if a|bc implies that a|b or a|c.

For \mathbb{Z} , these two definitions are equivalent, but this is not the case in all rings.

Lemma 1.1. In a principal ideal domain, irreducible elements are prime.

Proof. Suppose p is irreducible and p|ab. We want to show that p|a or p|b. Suppose that $p \not|a$. Then (p, a) = (c) since R is a principal ideal domain. Then c|p, so c is a unit or is a unit times p. The second case is not possible because pu = c divides a, but a is not divisible by p. So (c) contains 1 (by multiplying c by c^{-1}) and is then equal to R. So (p, a) = (1) = R.

We now have px + ay = 1 for some $x, y \in R$, which makes pbx + aby = b. Both terms are divisible by p, so p|b. Hence, p is prime.

Definition 1.7. A *unique factorization domain* is a commutative ring in which every element can be uniquely expressed as a product of irreducible elements, up to order and multiplication by units.

Theorem 1.2. Every principal ideal domain is a unique factorization domain.

Proof. We first show existence of factorization into irreducibles. Given $a \in R$, first find irreducible p dividing a if a is not a unit. Let a = bc; if b is irreducible, stop. Otherwise, let b = de, and repeat the process until we get an irreducible element. Can this go on forever? No. Suppose we have a, b, c, d, e, \ldots with a = b'b, b = c'c, etc., where b', c', \ldots are not units. Then the ideal $(a, b, c, d, \ldots) = (x)$, since we are in a PID. But then $x \in (a, b, c, d, e)$ (some finite sequence of the variables), so the sequence must stop after finitely many steps.

Now put a = bc with b irreducible, c = de where d is irreducible, e = fg, where f is irreducible and so on. This stops after a finite number of steps by a similar argument. So every nonzero element is a product of irreducibles.²

To prove uniqueness, suppose $a = p_1 \cdots p_m = q_1 \cdots q_n$ with p_i, q_j irreducible. We want to show that these factorizations are unique up to order and units. p_1 is irreducible, so p_1 divides some q_i as p_1 is prime. The q_i are irreducible, so $q_i = p_1 u$ for some unit $u \in R$. By removing p_1 and this q_i from their respective sides (really we are bringing the two products to the same side, factoring out the p_1 , and asserting that the rest equals 0), we can repeat this to eventually get our result.

Example 1.5. *R* be the set of polynomials in x^q for rational q > 0; this is a set of terms of elements like $3 + 3x^{5/7} + 2x^{17/3}$. This argument goes wrong here because $x = x^{1/2}x^{1/2} = x^{1/4}x^{1/4}x^{1/4}x^{1/4} = \cdots$. The ideal $(x^{1/2}, x^{1/4}, x^{1/8}, \ldots)$ is not principal.

1.2.2 Examples and Applications

Example 1.6. Suppose $a+bi \in \mathbb{Z}[i]$ is prime. Then $(a+bi)(a-bi) = a^2+b^2 \in \mathbb{Z}$. So we can use this to factor elements in \mathbb{Z} into elements in $\mathbb{Z}[i]$. For example, $5 = 2^2+1 = (2+i)(2-i)$.

$$65 = 5 \times 13 = (2+i)(2-i)(3+2i)(3-2i) = (4+7i)(4-7i) = (8-i)(8+i)$$

This gives us $65 = 4^2 + 7^2 = 8^2 + 1^2$. So the different factorizations of $x \in \mathbb{Z}$ in the Gaussian integers give us the ways to write x as a sum of two squares.

Example 1.7. Let $R = \mathbb{Z}[\sqrt{-2}]$. Imagine this as a rectangular lattice in \mathbb{C} . The circles of radius 1 around these points cover \mathbb{C} , so as we argued before with $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{-2}]$ is a euclidean domain and hence is a unique factorization domain.

Now let $R = \mathbb{Z}[\sqrt{-3}]$. The circles of radius 1 do not cover the point $1/2 + \sqrt{-3}/2$. In fact, R is not a unique factorization domain. We have $2 \times 2 = (1 + \sqrt{3}i)(1 - \sqrt{3}i)$, and

²This is still true if R has the following property: there is no strictly increasing sequence of ideals $I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$. These are called *Noetherian rings*.

the only units are ± 1 . These are all irreducible elements. If 2 = ab, then |a| |b| = |2| = 2, which means $|a| = \pm 1$ or $|b| = \pm 1$.

Multiplying $z \in R$ by a multiplies |z| by |a| and rotates z by $\arg(a)$. So a principal ideal in $\mathbb{Z}[\sqrt{-3}]$ looks like a rotated and rescaled rectangular lattice. What does a non-principal ideal look like? Look at $(2, 1 + \sqrt{-3})$; we get a "diamond" lattice instead of a rectangular one.

Unique factorization domains need not be principal ideal domains.

Example 1.8. $\mathbb{Z}[x]$ is a UFD and has the non-principal ideal (2, x).

Example 1.9. Let K be a field. K[x, y] is a UFD and has the non-principal ideal (x, y).

We will see later that if R is a UFD, then so is R[x], the ring of polynomials over R.

Theorem 1.3 (Fermat). Any prime $p \in \mathbb{Z}$ with p > 0 and $p \equiv 1 \pmod{4}$ can be uniquely expressed as $a^2 + b^2$ (up to sign differences in a, b).

Proof. $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic of order p-1 = 4n. It has an element -1 of order 2. Let g be a generator, so $g^{4n} = 1$. So $-1 \equiv g^{2n} \pmod{p}$, which means that -1 is a square mod p. This gives us that $-1 = a^2 - np$ for some n, a. So $np = a^2 + 1 = (a+i)(a-i)$ in $\mathbb{Z}[i]$. p|(a+i)(a-i), but does not divide either of these two factors, so p is not prime and hence is not irreducible in $\mathbb{Z}[i]$. So p = (a+bi)(a-bi) for some $a, b \in \mathbb{Z}$ (we must have this decomposition because a+bi times any other number would not be purely real). This makes $p = a^2 + b^2$.

For uniqueness, suppose that $p = x^2 + y^2$. Then p = (x + iy)(x - iy), which means x + iy = u(a + bi) for some unit u because Z[i] is a unique factorization domain. Then $x = \pm 1$ and $b = \pm b$.